3.6.1 \(\int \frac {(1+x)^{3/2} (1-x+x^2)^{3/2}}{x^2} \, dx\) [501]

Optimal. Leaf size=323 \[ \frac {9}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {27 \sqrt {1+x} \sqrt {1-x+x^2}}{7 \left (1+\sqrt {3}+x\right )}-\frac {\sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}{x}-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{14 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {9 \sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )} \]

[Out]

9/7*x^2*(1+x)^(1/2)*(x^2-x+1)^(1/2)-(x^3+1)*(1+x)^(1/2)*(x^2-x+1)^(1/2)/x+27/7*(1+x)^(1/2)*(x^2-x+1)^(1/2)/(1+
x+3^(1/2))+9/7*3^(3/4)*(1+x)^(3/2)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)*(x^2-x+1)^(1/2
)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-27/14*3^(1/4)*(1+x)^(3/2)*EllipticE(
(1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(x^2-x+1)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^
2)^(1/2)/(x^3+1)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 323, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {929, 283, 285, 309, 224, 1891} \begin {gather*} \frac {9 \sqrt {2} 3^{3/4} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{14 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}+\frac {9}{7} \sqrt {x+1} \sqrt {x^2-x+1} x^2+\frac {27 \sqrt {x+1} \sqrt {x^2-x+1}}{7 \left (x+\sqrt {3}+1\right )}-\frac {\sqrt {x+1} \sqrt {x^2-x+1} \left (x^3+1\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 + x)^(3/2)*(1 - x + x^2)^(3/2))/x^2,x]

[Out]

(9*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2])/7 + (27*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) - (Sqrt[1 +
 x]*Sqrt[1 - x + x^2]*(1 + x^3))/x - (27*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(14*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (9*Sqrt[2]*3^(3/4)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2
)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*(1 + x^3))

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 283

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Dist[b*n*(p/(c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 929

Int[((g_.)*(x_))^(n_)*((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d
+ e*x)^FracPart[p]*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]), Int[(g*x)^n*(a*d + c*e*x^3)^p,
 x], x] /; FreeQ[{a, b, c, d, e, g, m, n, p}, x] && EqQ[m - p, 0] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {(1+x)^{3/2} \left (1-x+x^2\right )^{3/2}}{x^2} \, dx &=\frac {\left (\sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {\left (1+x^3\right )^{3/2}}{x^2} \, dx}{\sqrt {1+x^3}}\\ &=-\frac {\sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}{x}+\frac {\left (9 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int x \sqrt {1+x^3} \, dx}{2 \sqrt {1+x^3}}\\ &=\frac {9}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}-\frac {\sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}{x}+\frac {\left (27 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {x}{\sqrt {1+x^3}} \, dx}{14 \sqrt {1+x^3}}\\ &=\frac {9}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}-\frac {\sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}{x}+\frac {\left (27 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx}{14 \sqrt {1+x^3}}+\frac {\left (27 \sqrt {\frac {1}{2} \left (2-\sqrt {3}\right )} \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{7 \sqrt {1+x^3}}\\ &=\frac {9}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {27 \sqrt {1+x} \sqrt {1-x+x^2}}{7 \left (1+\sqrt {3}+x\right )}-\frac {\sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}{x}-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{14 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {9 \sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.34, size = 244, normalized size = 0.76 \begin {gather*} \frac {\sqrt {1+x} \left (\frac {4 \left (1-x+x^2\right ) \left (-7+2 x^3\right )}{x}-\frac {27 \sqrt {2} \sqrt {\frac {-i+\sqrt {3}+2 i x}{-3 i+\sqrt {3}}} \left (\left (-3 i+\sqrt {3}\right ) E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )-\left (-i+\sqrt {3}\right ) F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )\right )}{\sqrt {-\frac {i (1+x)}{i+\sqrt {3}-2 i x}}}\right )}{28 \sqrt {1-x+x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 + x)^(3/2)*(1 - x + x^2)^(3/2))/x^2,x]

[Out]

(Sqrt[1 + x]*((4*(1 - x + x^2)*(-7 + 2*x^3))/x - (27*Sqrt[2]*Sqrt[(-I + Sqrt[3] + (2*I)*x)/(-3*I + Sqrt[3])]*(
(-3*I + Sqrt[3])*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqr
t[3])] - (-I + Sqrt[3])*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*
I - Sqrt[3])]))/Sqrt[((-I)*(1 + x))/(I + Sqrt[3] - (2*I)*x)]))/(28*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 368, normalized size = 1.14

method result size
risch \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \left (2 x^{3}-7\right )}{7 x}+\frac {27 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right ) \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}}{7 \sqrt {x^{3}+1}\, \sqrt {1+x}\, \sqrt {x^{2}-x +1}}\) \(230\)
elliptic \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}\, \left (\frac {2 x^{2} \sqrt {x^{3}+1}}{7}+\frac {27 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticF \left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{7 \sqrt {x^{3}+1}}-\frac {\sqrt {x^{3}+1}}{x}\right )}{x^{3}+1}\) \(235\)
default \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \left (27 i \sqrt {3}\, \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x +4 x^{6}+81 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x -162 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticE \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x -10 x^{3}-14\right )}{14 x \left (x^{3}+1\right )}\) \(368\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/14*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(27*I*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)
*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2
)+3))^(1/2))*3^(1/2)*x+4*x^6+81*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^
(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(
1/2))*x-162*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3
^(1/2)))^(1/2)*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-10*x^3-14)/x
/(x^3+1)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)/x^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.56, size = 39, normalized size = 0.12 \begin {gather*} \frac {{\left (2 \, x^{3} - 7\right )} \sqrt {x^{2} - x + 1} \sqrt {x + 1} - 27 \, x {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right )}{7 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="fricas")

[Out]

1/7*((2*x^3 - 7)*sqrt(x^2 - x + 1)*sqrt(x + 1) - 27*x*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)))/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x + 1\right )^{\frac {3}{2}} \left (x^{2} - x + 1\right )^{\frac {3}{2}}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)*(x**2-x+1)**(3/2)/x**2,x)

[Out]

Integral((x + 1)**(3/2)*(x**2 - x + 1)**(3/2)/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)*(x^2-x+1)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (x+1\right )}^{3/2}\,{\left (x^2-x+1\right )}^{3/2}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x + 1)^(3/2)*(x^2 - x + 1)^(3/2))/x^2,x)

[Out]

int(((x + 1)^(3/2)*(x^2 - x + 1)^(3/2))/x^2, x)

________________________________________________________________________________________